Chapter 2 Quadrilaterals

VERY SHORT ANSWER TYPE QUESTIONS

Question.1 Three angles of a quadrilateral are equal and the fourth angle is equal to 144°. Find each of the equal angles of the quadrilateral.

Solution.

Let each equal angle of given quadrilateral be x.

We know that, sum of all interior angles of a quadrilateral is 360°.

$$\therefore x + x + x + 144^{\circ} = 360^{\circ}$$
$$3x = 360^{\circ} - 144^{\circ}$$
$$3x = 216^{\circ}$$
$$x = 72^{\circ}$$

Hence, each equal angle of the quadrilateral is of 72° measures.

Question.2 Two consecutive angles of a parallelogram are $(x + 60)^{\circ}$ and $(2x + 30)^{\circ}$. What special name can you give to this parallelogram ?

Solution.

We know that consecutive interior angles of a parallelogram are supplementary.

$\therefore (x + 60)^{\circ} +$	$(2x + 30)^{\circ} =$	180°
⇒	$3x^{\circ} + 90^{\circ} =$	180°
\Rightarrow ,	$3x^{\circ} =$	90°
⇒	$x^{\circ} =$	30°

Thus, two consecutive angles are $(30 + 60)^\circ$, $(2 \times 30 + 30)^\circ$ *i.e.*, 90° and 90°.

Hence, the special name of the given parallelogram is rectangle.

Question.3 If one angle of a parallelogram is 30° less than twice the smallest angle, then find the measure of each angle.

Solution.

Let smallest angle be x One angle = $2x - 30^{\circ}$ $\therefore x + 2x - 30^{\circ} = 180^{\circ}$ $\Rightarrow \qquad 3x = 210^{\circ}$ $\Rightarrow \qquad x = 70^{\circ}$ $\therefore \qquad 2x - 30^{\circ} = 110^{\circ}$ $\therefore \qquad Angles are 70^{\circ}, 110^{\circ}, 70^{\circ}, 110^{\circ}$

Question.4 If one angle of a parallelogram is twice of its adjacent angle, find the angles of the parallelogram. [CBSE-15-6DWMW5A]

Solution.

Let the two adjacent angles be x° and $2x^{\circ}$.

In a parallelogram, sum of the adjacent angles are 180°.

 $\therefore \qquad x + 2x = 180^{\circ}$ $\Rightarrow \qquad 3x = 180^{\circ}$ $\Rightarrow \qquad x = 60^{\circ}$

Thus, the two adjacent angles are 120° and 60° . Hence, the angles of the parallelogram are 120° , 60° , 120° and 60° .

Question.5

In the given figure, ABCD is a parallelogram in which $\angle DAB = 70^{\circ}$ and $\angle DBC = 65^{\circ}$, then find the measure of $\angle CDB$.

Solution.

	$\angle A + \angle B = 180^{\circ}$
\Rightarrow	$70^\circ + \angle B = 180^\circ$
\Rightarrow	$\angle B = 110^{\circ}$
⇒	$\angle ABD + \angle DBC = 110^{\circ}$
\Rightarrow	$\angle ABD + 65^\circ = 110^\circ$
⇒ ·	$\angle ABD = 45^{\circ}$
Now,	$\angle CDB = \angle ABD = 45^{\circ}$

Question.6.If the diagonals of a quadrilateral bisect each other at right angles, then name the quadrilateral.

Solution. Rhombus.

Question.7 In quadrilateral PQRS, if $\angle P = 60^{\circ}$ and $\angle Q : \angle R : \angle S = 2:3:7$, then find the measure of $\angle S$.

Solution.

Let
$$\angle Q = 2x$$
, $\angle R = 3x$ and $\angle S = 7x$
Now, $\angle P + \angle Q + \angle R + \angle S = 360^{\circ}$
 $\Rightarrow 60^{\circ} + 2x + 3x + 7x = 360^{\circ}$
 $\Rightarrow 12x = 300^{\circ}$
 $\Rightarrow x = \frac{300^{\circ}}{12} = 25^{\circ}$
 $\angle S = 7x = 7 \times 25^{\circ} = 175^{\circ}$

Question.8 If an angle of a parallelogram is two-third of its adjacent angle, then find the smallest angle of the parallelogram.

CLICK HERE

Get More Learning Materials Here :

Solution.

In a parallelogram ABCD,

Question.9 In the given figure, ABCD is a parallelogram. If $\angle B = 100^{\circ}$, then find the value of $\angle A + \angle C$.

[opp. $\angle s$ of a $||^{gm}$]

Solution.

 $\therefore ABCD \text{ is a parallelogram}$ $\therefore \angle A + \angle B = 180^{\circ}$ $\Rightarrow \angle A + 100^{\circ} = 180^{\circ}$ $\Rightarrow \angle A = 80^{\circ}$ $\therefore \angle C = \angle A = 80^{\circ}$ $\therefore \angle A + \angle C = 80^{\circ} + 80^{\circ}$ $= 160^{\circ}$

Question.10 If the diagonals of a parallelogram are equal, then state its name.

Solution. Rectangle

Question.11 ONKA is a square with $\angle KON = 45^{\circ}$. Determine $\angle KOA$.

Solution.

Since ONKA is a square $\therefore \qquad \angle AON = 90^{\circ}$ We know that diagonal of a square bisects its $\angle s$ $\Rightarrow \qquad \angle AOK = \angle KON = 45^{\circ}$ Hence, $\angle KOA = 45^{\circ}$ Question.12 PQRS is a parallelogram, in which PQ = 12 cm and its perimeter is 40 cm. Find the length of each side of the parallelogram.

Solution.

Here, PQ = SR = 12 cmLet PS = x and PS = QR $\therefore x + 12 + x + 12 = Perimeter$ 2x + 24 = 402x = 16x = 8

Hence, length of each side of the parallelogram is 12 cm, 8 cm, 12 cm and 8 cm.

Question.13

The diagonals AC and BD of parallelogram ABCD intersect at the point O. If $\angle DAC = 34^{\circ}$ and $\angle AOB = 75^{\circ}$, then what is the measure of $\angle DBC$?

Solution.

ABCD is a parallelogram. $\therefore \qquad AD \parallel BC \Rightarrow \angle ACB = \angle DAC = 34^{\circ}$ Now, $\angle AOB$ is an exterior angle of $\triangle BOC$ $\therefore \qquad \angle OBC + \angle OCB = \angle AOB \qquad [\because ext \angle = sum of two int. opp. \angle s]$ $\Rightarrow \qquad \angle OBC + 34^{\circ} = 75^{\circ}$ $\Rightarrow \qquad \angle OBC = 75^{\circ} - 34^{\circ} = 41^{\circ}$ or $\angle DBC = 41^{\circ}$

Question.14

In figure, ABCD is a rhombus such that $\angle ACB = 50^\circ$, then what is the measure of $\angle ADB$?

AD || BC $\therefore \angle CAD = \angle ACB = 50^{\circ}$ [alt. int. $\angle s$]

: The diagonals of a rhombus are at right angle to each other.

 $\therefore \angle AOD = 90^{\circ}$

Now, in $\triangle AOD$, we have

 $\angle ADO + \angle DAO + \angle AOD = 180^{\circ}$ $\Rightarrow \qquad \angle ADO + 50^{\circ} + 90^{\circ} = 180^{\circ}$ $\Rightarrow \qquad \angle ADO + 140^{\circ} = 180^{\circ}$

 \Rightarrow $\angle ADO \text{ or } \angle ADB = 40^{\circ}$

Question. 15.If ABCD is a parallelogram, then what is the measure of $\angle A - \angle C$?

Solution. $\angle A - \angle C = 0^{\circ}$ [opposite angles of parallelogram are equal]

Short Answer Questions Type-1

Question.16 Prove that a diagonal of a parallelogram divide it into two congruent triangles. [CBSE March 2012]

Solution. Given : A parallelogram ABCD and AC is its diagonal.

To Prove : $\triangle ABC \cong \triangle CDA$

Proof : In $\triangle ABC$ and $\triangle CDA$, we have

 $\angle DAC = \angle BCA$ [alt. int. angles, since AD || BC]

AC = AC [common side]

and $\angle BAC = \angle DCA$ [alt. int. angles, since AB || DC]

.: By ASA congruence axiom, we have

 $\triangle ABC \cong \triangle CDA$

Question.17 ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD (see fig.). Show that : (i) AAPB \cong ACQD (ii) AP = CQ [CBSE March 2012]

Solution.

Given : In II^{gm} ABCD, AP and CQ are perpendiculars from the vertices A and C on the diagonal BD.

To Prove : (i)
$$\triangle APB \cong \triangle CQD$$

(ii) $AP = CQ$
Proof : (i) In $\triangle APB$ and $\triangle CQD$
 $AD = BC$ [opp. sides of a $||^{gm} ABCD$]
 $\angle APB = \angle DQC$ [each = 90°]
 $\angle ABP = \angle CDQ$ [alt. int. $\angle s$]
 $\Rightarrow \triangle APB \cong \triangle CQD$ [by AAS congruence axiom]
(ii) $\Rightarrow AP = CQ$ [c.p.c.t.]

Get More Learning Materials Here :

Question.18ABCD is a rhombus with $\angle ABC = 50^\circ$. Determine $\angle ACD$.[CBSE March 2012]

Solution.

Since ABCD is a rhombus.

 \Rightarrow ABCD is also a parallelogram.

 \therefore $\angle ADC = \angle ABC = 50^{\circ}$ [opp. angles of a parallelogram are equal] \therefore Adjacent sides of a rhombus are equal

 $\therefore \qquad AD = DC$ $\Rightarrow \qquad \angle DAC = \angle ACD$

 $= \angle ACD$ [angles opposite to equal sides are equal] = x (say)

 \therefore In $\triangle ACD$, we have

 $\angle DAC + \angle ACD + \angle ADC = 180^{\circ}$ $\Rightarrow \qquad 2x = 130^{\circ}$ $\therefore \qquad \angle ACD = 65^{\circ}$

\Rightarrow	x +	<i>x</i> -	+ 50°	=	180°
⇒			x	=	65°

Question.19

ABCD is a parallelogram in which $\angle ADC = 75^{\circ}$ and side AB is produced to point E as shown in the figure. Find x + y. [CBSE-14-ERFKZ8H]

Solution.

Here, $\angle C$ and $\angle D$ are adjacent angles of the parallelogram.

 $\therefore \qquad \angle C + \angle D = 180^{\circ}$ $\Rightarrow \qquad x + 75^{\circ} \doteq 180^{\circ}$ $\Rightarrow \qquad x = 105^{\circ}$ Also, $y = x = 105^{\circ}$ [alt. int. angles]
Thus, $x + y = 105^{\circ} + 105^{\circ} = 210^{\circ}$

Question.20 In the figure, ABCD is a rhombus, whose diagonals meet at O. Find the values of x and y.

[CBSE-14-17DIG1U]

Since diagonals of a rhombus bisect each other at right angle.

 $\therefore \text{ In } \Delta AOB, \text{ we have}$ $\angle OAB + \angle x + 90^{\circ} = 180^{\circ}$ $\angle x = 180^{\circ} - 90^{\circ} - 35^{\circ} \quad [\because \angle OAB = 35^{\circ}]$ $= 55^{\circ}$ Also, $\angle DAO = \angle BAO = 35^{\circ}$ $\therefore \angle y + \angle DAO + \angle BAO + \angle x = 180^{\circ}$ $\Rightarrow \qquad \angle y + 35^{\circ} + 35^{\circ} + 55^{\circ} = 180^{\circ}$ $\Rightarrow \qquad \angle y = 180^{\circ} - 125^{\circ} = 55^{\circ}$ Hence, the values of x amd y are $x = 55^{\circ}, y = 55^{\circ}$.

Question.21 If the diagonals of a parallelogram are equal, then show that it is a rectangle. [CBSE March 2012]

Solution.

Given : A parallelogram ABCD, in which AC = BD. **To Prove** : ABCD is a rectangle. Proof : In $\triangle ABC$ and $\triangle BAD$ AB = AB[common] AC = BD[given] BC = AD[opp. sides of a ll^{gm}] ⇒ ' $\triangle ABC \cong \triangle BAD$ [by SSS congruence axiom] $\angle ABC = \angle BAD [c.p.c.t.]$ \Rightarrow $\angle ABC + \angle BAD = 180^{\circ}$ [co-interior angles] Also, $\angle ABC + \angle ABC = 180^{\circ}$ [:: $\angle ABC = \angle BAD$] \Rightarrow $2 \angle ABC = 180^{\circ}$ \Rightarrow $\angle ABC = \frac{1}{2} \times 180^\circ = 90^\circ$ ⇒

Hence, parallelogram ABCD is a rectangle.

Question.22 ABCD is a parallelogram and line segments AX, CY bisect the angles A and C, respectively. Show that AX\\CY. D x c

Solution.

Since opposite angles are equal in a parallelogram. Therefore, in parallelogram ABCD, we have

$$\angle A = \angle C$$
$$\frac{1}{2} \angle A = \frac{1}{2} \angle C$$

 $\angle 1 = \angle 2 \dots (i)$

⇒

 \Rightarrow

[:: AX and CY are bisectors of $\angle A$ and $\angle C$ respectively]

Now, AB||DC and the transversal CY intersects them.

 \therefore $\angle 2 = \angle 3$...(*ii*) [\because alternate interior angles are equal] From (*i*) and (*ii*), we have

∠1 = ∠3

Thus, transversal AB intersects AX and YC at A and Y such that $\angle 1 = \angle 3$ *i.e.*, corresponding angles are equal.

∴ AX ||CY

Short Answer Questions Type-II

Question.23

The diagonals of a quadrilateral ABCD are perpendicular to each other. Show that the quadrilateral formed by joining the mid-points of its sides is a rectangle. [CBSE March 2012]

Given : A quadrilateral ABCD whose diagonals AC and BD are perpendicular to each other at O. P, Q, R and S are mid-points of side AB, BC, CD and DA respectively are joined are formed quadrilateral PQRS.

To Prove : PQRS is a rectangle.

Proof : In ΔABC, P and Q are mid-points of AB and BC respectively.

 $\therefore \quad PQ \parallel AC \text{ and } PQ = \frac{1}{2} AC \quad \dots \text{ (i) [mid-point theorem]}$ Further, in $\triangle ACD$, R and S are mid-points of CD and DA respectively. $\therefore \quad SR \parallel AC \text{ and } SR = \frac{1}{2}AC \quad \dots \text{ (ii) [mid-point theorem]}$ From (i) and (ii), we have PQ || SR and PQ = SR

Thus, one pair of opposite sides of quadrilateral PQRS are parallel and equal.

.: PQRS is a parallelogram.

Since $PQ \parallel AC \Rightarrow PM \parallel NO$

In $\triangle ABD$, P and S are mid-points of AB and AD respectively.

∴ PS∥BD

PS || BD [mid-point theorem]

 \Rightarrow PN || MO

- \therefore Opposite sides of quadrilateral PMON are parallel.
- .: PMON is a parallelogram.

 $\therefore \quad \angle MPN = \angle MON \qquad \text{[opposite angles of } ||^{gm} \text{ are equal]}$

But $\angle MON = 90^{\circ}$

 $\therefore \quad \angle MPN = 90^\circ \implies \quad \angle QPS = 90^\circ$

Thus, PQRS is a parallelogram whose one angle is 90°.

.: PQRS is a rectangle.

Question.24 ABCD is a quadrilateral in which the bisectors of $\angle A$ and $\angle C$ meet DC produced at Y and BA produced at X respectively. Prove that : [CBSE-15-6DWMW5A]

Solution.

$$\angle X + \angle Y = \frac{1}{2} (\angle A + \angle C)$$

Here, $\angle 1 = \angle 2$ and $\angle 3 = \angle 4$ In $\triangle XBC$, we have

$$\angle X + \angle B + \angle 4 = 180^{\circ}$$

$$\angle X + \angle B + \frac{1}{2} \angle C = 180^{\circ}$$

In ΔADY , we have

$$\angle 2 + \angle D + \angle Y = 180^{\circ}$$
$$\frac{1}{2} \angle A + \angle D + \angle Y = 180^{\circ}$$

[given]

...(ii)

Adding (i) and (ii), we have

 $\angle X + \angle Y + \angle B + \angle D + \frac{1}{2}\angle C + \frac{1}{2}\angle A = 360^{\circ}$ Also, in quadrilateral ABCD, $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$ $\therefore \angle X + \angle Y + \angle B + \angle D + \frac{1}{2}\angle C + \frac{1}{2}\angle A = \angle A + \angle B + \angle C + \angle D$ $\angle X + \angle Y = \angle A - \frac{1}{2}\angle A + \angle C - \frac{1}{2}\angle C$ $\angle X + \angle Y = \frac{1}{2} (\angle A + \angle C)$

Question.25 In a parallelogram, show that the angle bisectors of two adjacent angles intersect at right angles. [CBSE March 2012]

Solution.

Given : A parallelogram ABCD such that the bisectors of adjacent angles A and B intersect at P.

at P. **To Prove** : $\angle APB = 90^{\circ}$ **Proof** : Since ABCD is a ||^{gm} \therefore AD || BC $\Rightarrow \qquad \angle A + \angle B = 180^{\circ}$ [sum of consecutive int. $\angle s$] $\Rightarrow \qquad \frac{1}{2}\angle A + \frac{1}{2}\angle B = 90^{\circ}$

 $\Rightarrow \qquad \angle 1 + \angle 2 = 90^{\circ}$

[:: AP is the bisector of $\angle A$ and BP is the bisector of $\angle B$]

$$\therefore \qquad \angle 1 = \frac{1}{2} \angle A \text{ and } \angle 2 = \frac{1}{2} \angle B$$

Now, in $\triangle APB$, we have

∠1 +	$\angle APB + \angle 2 =$	180°	[sum of three angles of a Δ]
\Rightarrow	$90^{\circ} + \angle APB =$	180°	$[:: \angle 1 + \angle 2 = 90^\circ, \text{ from } (i)]$
Hence,	∠APB =	90°.	

Question.26 D, E and F are respectively the mid-points of the sides AB, BC and CA of a triangle ABC. Prove that by joining these mid-points D, E and F, the triangles ABC is divided into four congruent triangles. [NCERT Exemplar Problem]

CLICK HERE

>>>

🕀 www.studentbro.in

Since the segment joining the mid-points of any two sides of a triangle is half the third side and parallel to it.

:.

$$DE = \frac{1}{2}AC \implies DE = AF = CF$$
$$EF = \frac{1}{2}AB \implies EF = AD = BD$$
$$DF = \frac{1}{2}BC \implies DF = BE = CE$$

In ΔDEF and ΔCFE , we have

DE = CF
DF = CE
EF = FE
$\Delta \text{DEF} \cong \Delta \text{CFE}$
$\Delta DEF\cong \Delta BDE \text{ and } \Delta DEF\cong \Delta AFD$

Thus, $\Delta DEF \cong \Delta CFE \cong \Delta BDE \cong \Delta AFD$

Hence, $\triangle ABC$ is divided into four congruent triangles.

Question.27

Points P and Q have been taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AP = CQ (fig.). Show that AC and PQ bisect each other.

[NCERT Exemplar Problem]

[from (i)] [from (ii)] [common] [by SSS criterion of congruence]

Since ABCD is a parallelogram.

С
)

 \Rightarrow AP || QC

[:: AP and QC are parts of AB and DC respectively] Also, AP = CQ [given]

Thus, APCQ is a parallelogram.

We know that diagonals of a parallelogram bisect each other. Hence, AC and PQ bisect each other.

Question.28

In quadrilateral ABCD of the given figure, X and Y are points on diagonal AC such that AX = CY and BXDYis a parallelogram. Show that ABCD is a parallelogram. [CBSE-14-GDQNI3W]

Since BXDY is a parallelogram.

XO = YODO = BO

.... (i) (ii)

.... (iv)

[∵ diagonals of a parallelogram bisect each other] (iii) [given]

But AX = CY

Adding (i) and (iii), we have

⇒

...

AO = CO

XO + AX = YO + CY

From (ii) and (iv), we have

AO = CO and DO = BO

Thus, ABCD is a parallelogram, because diagonals AC and BD bisect each other at O.

Question.29

In the fig., D, E and F are, respectively the mid-points of sides BC, CA and AB of an equilateral triangle ABC. Prove that DEF is also an equilateral triangle.

[CBSE March 2012]

🕀 www.studentbro.in

Solution. Since line segment joining the mid-points of two sides of a triangle is half of the third side. Therefore, D and E are mid-points of BC and AC respectively.

$$\Rightarrow$$
 DE = $\frac{1}{2}$ AB(i)

E and F are the mid-points of AC and AB respectively.

 $\therefore \qquad \text{EF} = \frac{1}{2} \text{ BC} \qquad \dots (ii)$

F and D are the mid-points of AB and BC respectively.

.:.

$$FD = \frac{1}{2} AC \qquad \dots (iii)$$

Now, $\triangle ABC$ is an equilateral triangle.

⇒

$$AB = BC = CA$$

 $\frac{1}{2} AB = \frac{1}{2}BC = \frac{1}{2}CA$ $DE = EF = FD \quad [using (i), (ii) and (iii)]$

Hence, DEF is an equilateral triangle.

Long Answer Type Questions

Question.30 ABC is a triangle right-angled at C. A line through the mid-point M of hypotenuse AB parallel to BC intersects AC ad D. Show that: (i) D is the mid-point of AC (ii) MD \perp AC (iii) CM = MA = 1/2 AB. [CBSE March 2012]

CLICK HERE

Solution.

Given : A right $\triangle ABC$, right-angled at C. A line through the mid-point M of hypotenuse AB parallel to BC intersects AC at D. To Prove : (i) D is the mid-point of AC (ii) MD \perp AC (iii) $CM = MA = \frac{1}{2}AB$ Proof : (i) Since M is the mid-point of hyp. AB and MD || BC. \Rightarrow D is the mid-point of AC. $\angle BCA = 90^{\circ}$ (ii) Since and MD || BC [given] $\angle MDA = \angle BCA$ \Rightarrow = 90° [corresp. $\angle s$] $MD \perp AC$ ⇒ (iii) Now, in $\triangle ADM$ and $\triangle CDM$ MD = MD[common] $\angle MDA = \angle MDC$ $[each = 90^{\circ}]$ AD = CD[:: D is the mid-point of AC] $\Delta ADM \cong \Delta CDM$ [by SAS congruence axiom] \Rightarrow AM = CM⇒ Also, M is the mid-point of AB [given] $CM = MA = \frac{1}{2} AB.$ \Rightarrow

Question.31

l, m and n are three parallel lines intersected by transversals p and q such that l, m and n cut off equal intercepts AB and BC on p (see figure). Show that l, m and n cut off equal intercepts DE and EF on q also. [CBSE March 2012]

Through E, draw a line parallel to p intersecting l at G and n at H respectively. $1 \parallel m$ \Rightarrow AG || BE Since and AB || GE [by construction] ... Opposite sides of quadrilateral AGEB are parallel. : AGEB is a parallelogram. Similarly, we can prove that BEHC is a parallelogram. Now. AB = GEand BC = EHBut, given that AB = BC. Thus, GE = EHNow, in $\triangle DEG$ and $\triangle FEH$, we have $\angle DEG = \angle FEH$

GE = EHand $\angle DGE = \angle FHE$ By ASA congruence axiom, we have $\Delta DEG \cong \Delta FEH$ Hence, DE = EF

[opposite sides of II^{gm} AGEB] [opposite sides of II^{gm} BEHC]

> [vertically opposite angles] [proved above] [alternate interior angles]

> > [c.p.c.t.]

Question.32 The line segment joining the mid-points of any two sides of a triangle is parallel to the third side and equal to half of it.

Solution.

Given	:	A \triangle ABC in which D and E are the mid-points of side AB and AC respectively. DE is joined.	
To Prove	:	DE BC and DE = $\frac{1}{2}$ BC.	
Const.	:	Produce the line segment DE to F, such that DE = EF. Join FC.	

Get More Learning Materials Here :

Proof In Δs AED and CEF, we have : AE = CE[:: E is the mid-point of AC] $\angle AED = \angle CEF$ [vert. opp. ∠s] DE = EFand [by construction] $\triangle AED \cong \triangle CEF$ *.*.. [by SAS congruence axiom] AD = CF \Rightarrow ...(i) [c.p.c.t.] $\angle ADE = \angle CFE$...(*ii*) [c.p.c.t.] and Now, D is the mid-point of AB. ⇒ AD = DB...(iii) From (i) and (iii), CF = DB ...(iv) Also, from (ii) \Rightarrow AD || FC [if a pair of alt. int. $\angle s$ are equal. then lines are parallel] DB || CF \Rightarrow ...(v) From (iv) and (v), we find that DBCF is a quadrilateral such that one pair of opposite sides are equal and parallel. ∴ DBCF is a || gm. $DF \parallel BC$ and DF = BC⇒ [∵ opp. sides of a || gm are equal and parallel] Also. DE = EF[by construction] Hence, DE || BC and DE = $\frac{1}{2}$ BC. $[:: DE = \frac{1}{2}DF]$

Question.33

P is the mid - point of side AB of a parallelogramABCD. A line through B parallel to PD meets DC atQ and AD produced at R (see figure). Prove that :(i) AR = 2BC(ii) BR = 2BQ[CBSE March 2012]

🕀 www.studentbro.in

Solution.

(i) In $\triangle ARB$, P is a mid-point of AB and PD || BR. .: D is a mid-point of AR [converse of mid-point theorem] *:*.. AR = 2ADBut BC = AD[opposite sides of II^{gm} ABCD] Thus, AR = 2BC(ii) ··· ABCD is a parallelogram. *.*•. $DC \parallel AB \Rightarrow DQ \parallel AB$ Now, in $\triangle ARB$, D is a mid-point of AR and DQ II AB \therefore Q is a mid-point of BR [converse of mid-point theorem] BR = 2BQ \Rightarrow

CLICK HERE

Get More Learning Materials Here :

Question.34 ABCD is a trapezium in which $AB \parallel CD$ and AD = BC(see fig.). Show that :

(i) $\angle A = \angle B$ (ii) $\angle C = \angle D$ (iii) $\triangle ABC \cong \triangle BAD$

(iv) diagonal AC = diagonal BD.

[CBSE March 2011]

А

D

В

С

Solution.

Get More Learning Materials Here : 📕

Given : ABCD is a trapezium, in which AB || DC and AD = BC. **To Prove** : (i) $\angle A = \angle B$ (ii) $\angle C = \angle D$ (iii) $\triangle ABC \cong \triangle BAD$ (iv) diagonal AC = diagonal BD. **Const.** : Produce AB to E, such that a line through C parallel to DA (CE || DA), intersects AB in E. **Proof**: (i) In quad. AECD AE II DC [given] AD || EC [by const.] and \Rightarrow AECD is a parallelogram. AD = EC[opposite sides of II^{gm}] \Rightarrow AD = BCBut. [given] BC = EC⇒ $\angle 2 = \angle 1$ [angles opp. to equal sides of a Δ] \Rightarrow $\angle 1 + \angle 3 = 180^{\circ}$ Also. [linear pair] $\angle A + \angle 2 = 180^{\circ}$ and [consecutive interior $\angle s$] $\angle A + \angle 2 = \angle 1 + \angle 3$ \Rightarrow ∠A = ∠3 $[\because \angle 2 = \angle 1]$ \Rightarrow $\angle A = \angle B$ or (ii) AB || DC and AD is a transversal. $\angle A + \angle D = 180^{\circ}$ [consecutive interior $\angle s$] ... $\angle B + \angle D = 180^{\circ}$...(i) \Rightarrow $[:: \angle A = \angle B]$ Again, AB || DC and BC is a transversal. $\angle B + \angle C = 180^{\circ}$ *:*.. ...(ii) From (i) and (ii), we have $\angle B + \angle C = \angle B + \angle D$ $\angle C = \angle D$ \Rightarrow B E (iii) In $\triangle ABC$ and $\triangle BAD$, we have AB = AB[common] BC = AD[given] D С [proved above] $\angle ABC = \angle BAD$ [by SAS congruence axiom] $\triangle ABC \cong \triangle BAD$ ⇒ [c.p.c.t.] AC = BD $(iv) \Rightarrow$ Thus, diagonal AC = diagonal BD.

Question.35 ABC is a triangle right-angled at C. A line through the mid-point M of hypotenuse AB parallel to BC intersects AC at D. Show that:

CLICK HERE

(i) D is the mid-point of AC (ii) MD \perp AC (iii) CM = MA =1/2 AB. [CBSE March 2012]

Solution.

Given : A right \triangle ABC, right-angled at C. A line through the mid-point M of hypotenuse AB parallel to BC intersects AC at D.

To Prove : (i) D is the mid-point of AC (ii) $MD \perp AC$ (iii) $CM = MA = \frac{1}{2}AB$

Proof: Since M is the mid-point of hyp. AB and MD || BC.

 \Rightarrow D is the mid-point of AC. $\angle BCA = 90^{\circ}$ Since MD || BC and $\angle MDA = \angle BCA = 90^{\circ}$ \Rightarrow $MD \perp AC$ ⇒ Now, in $\triangle ADM$ and $\triangle CDM$ MD = MD $\angle MDA = \angle MDC$ AD = CD $\Delta ADM \cong \Delta CDM$ \Rightarrow AM = CM \rightarrow Also, M is the mid-point of AB

 \Rightarrow $CM = MA = \frac{1}{2}AB.$

Question.36

ABCD is a parallelogram and AB is produced to X such that AB = BX as shown in the figure. Show that DX and BC bisect each other at O. [CBSE-14-GDQNI3W]

Solution.

[given] [corresp. ∠s]

[common] [each = 90°] [∵ D is the mid-point of AC] [by SAS congruence axiom] [c.p.c.t.] [given]

Here.	AB = BX	[given]
Also,	AB = CD	[opp. sides of the parallelogram]
	BX = CD	
Now, in ΔB	SOX and ΔCOD , we have	
	$\angle XBO = \angle DCO$	[olt int col
	$\angle BXO = \angle CDO$	[alt. Int. ∠s]
	BX = CD	[alt. int. ∠s]
So, by using	g AAS congruence axiom,	[proved above]
	$\Delta BOX \cong \Delta COD$	
	BO = CO and $OX = OD$	[an at]
Hence, DX	and BC bisect each other at O.	~ [c.p.c.t.]
Question.37 diagonal BD	7 ABCD is a rhombus. Show that diagona 9 bisects∠B as well as ∠D	als AC bisects $\angle A$ as well as $\angle C$ and

Solution.

Since AB || DC and AC is a transversal. $\therefore \angle 1 = \angle 4$(i) [alt. int. $\angle s$] Similarly, AB || BC and AC is a transversal. $\therefore \angle 2 = \angle 3$(*ii*) [alt. int. ∠s] In **ABC** AB = BC[:: sides of rhombus are equal] $\therefore \ \angle 3 = \angle 1$(iii) [\angle s opp. to equal sides of a Δ] From (i), (ii) and (iii), we obtain $\angle 1 = \angle 2$ and $\angle 3 = \angle 4$ Thus, AC bisects $\angle A$ as well as $\angle C$.

[given]

Question.38

PQRS is a square and $\angle ABC = 90^{\circ}$ as shown in the figure. If AP = BQ = CR, then prove that $\angle BAC = 45^{\circ}$. [CBSE-14-GDQNI3W]

[proved above] $[\angle s \text{ opp. to equal sides}]$

(iii)

Question.39

Since PQRS is a square.

:.

 \Rightarrow

So,

....

:.

 \Rightarrow

⇒

 \Rightarrow

Hence,

Also,

Now, in $\triangle ABC$

 $\angle BAC = 45^{\circ}$ Hence. In the figure, P, Q and R are the mid-points of the sides BC, AC and AB of $\triangle ABC$. If BQ and PR intersect at X and CR and PQ intersect at

AB = BC

 $\angle B + \angle ACB + \angle BAC = 180^{\circ}$

 $\angle ACB = \angle BAC = x^{\circ}$ (say)

 $2x^\circ = 90^\circ$

 $\angle BAC = 45^{\circ}$

 $x^\circ = 45^\circ$

Y, then show that $XY = \frac{1}{4}BC$. [CBSE-14-ERFKZ8H]

Solution. Here, in AABC, R and Q are the mid-points of AB and AC respectively.

🕀 www.studentbro.in

By using mid-point theorem, we ha	live
RQ BC and RQ = $\frac{1}{2}$ BC	
\therefore RQ = BP = PC	[$::$ P is the mid-point of BC]
∴ RQ BP and RQ PC	
In quadrilateral BPQR	
$RQ \parallel BP, RQ = BP$	[prove above]
BPQR is a parallelogram	[:: one pair of opp. sides is parallel as well as equal]
\therefore X is the mid-point of PR	[∵ diagonals of a ^{gm} bisect each other]
Now, in quadrilateral PCQR	
$RQ \parallel PC$ and $RQ = PC$	[proved above]
. PCQR is a parallelogram	[∵ one pair of opp. sides is parallel as well as equal]
∴ Y is the mid-point of PQ	[∵ diagonals of a II ^{gm} bisect each other]
In ∆PQR	
X and Y are mid-points of PR and PC	Q respectively.
\therefore XY RQ and XY = $\frac{1}{2}$ RQ	[by using mid-point theorem]
$XY = \frac{1}{2} \left(\frac{1}{2}BC\right)$	$[\because RQ = \frac{1}{2}BC]$
\Rightarrow XY = $\frac{1}{4}$ BC	

Question.40

In the given figure, AE = DE and $BC \parallel AD$. Prove that the points A, B, C and D are concyclic. Also, prove that the diagonals of the quadrilateral ABCD are equal.

[CBSE-14-ERFKZ8H]

Since AE = DE*.*.. $\angle D = \angle A$ (i) [$\because \angle s$ opp. to equal sides of a Δ] Again, BC || AD ... $\angle EBC = \angle A$ (ii) [corresponding $\angle s$] From (i) and (ii), we have $\angle D = \angle EBC$ (iii) But $\angle EBC + \angle ABC = 180^{\circ}$ [a linear pair] ⇒ $\angle D + \angle ABC = 180^{\circ}$ [using (iii)] Now, a pair of opposite angles of quadrilateral ABCD is supplementary. Thus, ABCD is a cyclic quadrilateral i.e., A, B, C and D are concyclic. In $\triangle ABD$ and $\triangle DCA$ $\angle ABD = \angle ACD$ $[\angle s$ in the same segment for cyclic quad. ABCD] $\angle BAD = \angle CDA$ [using (i)] AD = AD[common] So, by using AAS congruence axiom, we have $\Delta ABD \cong \Delta DCA$ Hence, BD = CA[c.p.c.t.]

Question.41

In $\triangle ABC$, AB = 8cm, BC = 9cm and AC = 10 cm. X, Y and Z are mid-points of AO, BO and CO respectively as shown in the figure. Find the lengths of the sides of $\triangle XYZ$. [CBSE-15-6DWMW5A]

🕀 www.studentbro.in

Solution.

Here, in $\triangle ABC$, AB = 8 cm, BC = 9 cm, AC = 10 cm. In $\triangle AOB$, X and Y are the mid-points of AO and BO.

$$XY = \frac{1}{2}AB = \frac{1}{2} \times 8 \text{ cm} = 4 \text{ cm}$$

Similarly, in $\triangle BOC$, Y and Z are the mid-points of BO and CO.

... By using mid-point theorem, we have

$$YZ = \frac{1}{2}BC = \frac{1}{2} \times 9 \text{ cm} = 4.5 \text{ cm}$$

And, in $\triangle COA$, Z and X are the mid-points of CO and AO.

 \therefore ZX = $\frac{1}{2}$ AC = $\frac{1}{2}$ × 10 cm = 5 cm

Hence, the lengths of the sides of ΔXYZ are XY = 4 cm, YZ = 4.5 cm and ZX = 5 cm.

CLICK HERE

Get More Learning Materials Here : 🚅

Question. 42 ABCD is a parallelogram in which diagonal AC bisects $\angle A$ as well as $\angle C$. Show that ABCD is a rhombus. [CBSE-14-17DIG1U]

Solution.

Since ABCD is parallelogram AB || DC *.*.. Now, AB || DC and AC is a transversal (i) [alt. int. $\angle s$] $\angle 1 = \angle 3$ *:*.. Again, AD || BC and AC is a transversal (ii) [alt. in $\angle s$] $\angle 2 = \angle 4$ *:*.. Also, AC bisects ∠A $\angle 1 = \angle 2$ (iii) *.*.. From (i), (ii) and (iii), we have $\angle 3 = \angle 4$ Thus, AC bisects ∠C From (ii) and (iii), we have $\angle 1 = \angle 4$ BC = AB \Rightarrow AB = DC and BC = ADBut AB = BC = CD = DA⇒ Hence. ABCD is a rhombus.

[sides opp. to equal \angle s of a Δ] [\because ABCD is a parallelogram]

Question. 43

In the figure, ABCD is a trapezium in which AB || DC. E and F are the mid-points of AD and BC respectively. DF and AB are produced to meet at G. Also, AC and EF intersect at the point O. Show that : (i) EO || AB (ii) AO = CO

[CBSE-14-17DIG1U]

Here, E and F are the mid-points of AD and BC respectively. In ΔBFG and ΔCFD

BF = CF		[given]
∠BFG = ∠CFD		[vert. opp. ∠s]
∠BGF = ∠CDF		[alt. int. $\angle s$, as AB DC
	1	

So, by using AAS congruence axiom, we have

∆BFG ≅	∆CFD
DF =	FG

[c.p.c.t.]

Now, in $\triangle AGD$, E and F are the mid-points of AD and GD.

... By mid-point theorem, we have

EF || AG

or EO || AB

Also, in $\triangle ADC$, EO || DC

 \therefore EO is a line segment from mid-point of one side parallel to another side.

Thus, it bisects the third side.

Hence, AO = CO

Question. 44 ABCD is a parallelogram. If the bisectors DP and CP of angles D and C meet at P on side AB, then show that P is the mid-point of side AB. [CBSE-15-NS72LP7]

Solution.

⇒

Since DP and CP are angle bisectors of $\angle D$ and $\angle C$ respectively. *.*.. $\angle 1 = \angle 2$ and $\angle 3 = \angle 4$ R Now, AB || DC and CP is a transversal. 6 *.*.. $\angle 5 = \angle 1$ [alt. int. ∠s] $\angle 1 = \angle 2$ But [given] *:*. $\angle 5 = \angle 2$ Now, in $\triangle BCP$, $\angle 5 = \angle 2$ BC = BP⇒ ... (i) [sides opp. to equal \angle s of a Δ] Again, AB || DC and DP is a transversal. *.*.. $\angle 6 = \angle 3$ [alt. int. $\angle s$] But $\angle 4 = \angle 3$ [given] $\angle 6 = \angle 4$ *.*.. Now, in $\triangle ADP$, $\angle 6 = \angle 4$ DA = AP \Rightarrow (ii) [sides opp. to equal \angle s of a Δ] Also. BC = DA... (iii) [opp. sides of parallelogram] From (i), (ii) and (iii), we have BP = APHence, P is the mid-point of side AB.

Get More Learning Materials Here : 📕

Value Based Questions (Solved)

Question.1

Ankush prepare a poster in the form of parallelogram, as in figure.

- (i) If $\angle A = (5x + 7)^{\circ}$ and $\angle B = (3x 3)^{\circ}$, find all the angles of parallelogram ABCD.
- (ii) Which mathematical concept is used in this question ?
- (iii) By writing a slogan on poster which value is depicted by Ankush?

Solution.

(i) Since sum of adjacent angles of a parallelogram is 180°.

We have $\angle A + \angle B = 180^{\circ}$ *.*.. $5x + 7 + 3x - 3 = 180^{\circ}$ ⇒ $8x + 4 = 180^{\circ}$ \Rightarrow $8x = 176^{\circ}$ \Rightarrow $x = \frac{176^{\circ}}{8} = 22^{\circ}$ \Rightarrow $\angle A = (5x + 7)^{\circ}$ *.*.. $= 5 \times 22^{\circ} + 7 = 117^{\circ}$ $\angle B = (3x - 3)^{\circ} = 3 \times 22^{\circ} - 3 = 63^{\circ}$ $\angle C = \angle A = 117^{\circ}$ [opposite angles of a ||^{gm}] $\angle D = \angle B = 63^{\circ}$ and

(ii) Properties of parallelogram.

(iii) By saving electricity, saving energy.

Question.2

In the given figure, two opposite angles of a parallelogram PQRS are $(3x - 4)^{\circ}$ and $(56 - 3x)^{\circ}$. Find all the angles of given parallelogram. What value depicted by the given solgan ? Solution.

We know that opposite angles of a parallelogram are equal.

<i>:</i> .	$\angle P = \angle R$	
⇒	3x - 4 = 56 - 3x	
⇒	6x = 60	
⇒	x = 10	
Thus,	$\angle P = \angle R = 3 \times 10 - 4 = 26^{\circ}$	
Also,	$\angle P + \angle Q = 180^{\circ}$	[adjacent angles of a ^{gm}]
\Rightarrow	$\angle Q = 180^{\circ} - 26^{\circ} = 154^{\circ}$	
Thus,	$\angle Q = \angle S = 154^{\circ}$	

Hence, the four angles of the parallelogram PQRS are 26° , 154° , 26° and 154° . We should care our earth to have good eco balance.

Question.3

In the given figure TSEY and HONY are two parallelograms. If \angle HON = 47°, then find the measure of \angle HYN, \angle TSE and \angle YNO.

Write the role of value honesty in the field of sports.

Solution.

Honesty unites the team-mates and provide cooperation, a source of inspiration (team-spirit with sportsmanship).

